If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y+y^2=200
We move all terms to the left:
10y+y^2-(200)=0
a = 1; b = 10; c = -200;
Δ = b2-4ac
Δ = 102-4·1·(-200)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-30}{2*1}=\frac{-40}{2} =-20 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+30}{2*1}=\frac{20}{2} =10 $
| 7/3b-1=5 | | 24m+2=46m-4 | | 2x-3=(x-5)/4 | | √33y-√5y=0 | | 2*x-4=3*x+7 | | 6^(x-2)=11.18 | | 1/2*3x+x=120 | | 3b+2=20-3b | | 10x=96−2x | | 4x−11=5 | | 2x−4=14 | | 1/9x-(5x-1)=7/6x-(2x-1) | | x(3x+1)=80 | | 2x−7=3 | | 30(3/100)+20y=2 | | 9x−20=52 | | 2x−12=8 | | 900+20y=2 | | 5x+3-3x=3x+2-3x | | 4x+5=-11x-55 | | 7x+9=27+5x | | 6x+7=37+3x | | 5m+7=27m= | | (2x)^2/(0,200-x)^2=8,32 | | n=7140n | | 5(p-1)=2 | | x-7/x-2=5/4 | | 4x^2/2-x=1,32 | | 6x=8=62 | | F(0)=3x/2x^2+3 | | 2(3a-7)=12a+26 | | 10x+16=88 |